[an error occurred while processing this directive]
[an error occurred while processing this directive]Michael Kanost, Head
Professors Davis, Kanost, Muthukrishnan, Reeck, Roche, D. Takemoto, and Tomich; Associate Professors Krishnamoorthi, Prakash, A. Zolkiewska, and M. Zolkiewski; Assistant Professors Wei and Zufferey; Research Assistant Professor Iwamoto; Emeriti: Professors Burkhard, Koeppe, Kramer, Mitchell, and Parrish; Associate Professor Mueller.
785-532-6121
Fax: 785-532-7278
E-mail: biochem@k-state.edu
Biochemistry seeks to understand the molecular events of life processes. It applies chemical and physical techniques to elucidate the structure and organization of molecules, particularly macromolecules that are responsible for the structural organization as well as operation and control of all cellular processes. The emerging knowledge has broad importance and consequences for all areas of the life sciences.
The Department of Biochemistry offers work leading to bachelor of arts and bachelor of science degrees with majors in biochemistry. The BA degree provides a liberal education with sufficient emphasis on science for students who wish to prepare for certain professional schools. The BS degree prepares students for professional careers in biochemistry or entry into graduate biochemistry training programs.
To graduate, a student must have a grade of C or better in all science and mathematics courses required for the degree, including transfer courses, as specified below. In addition, to graduate a student must have a 2.2 GPA in required science and mathematics courses taken at K-State.
The requirements for the BA degree with a major in biochemistry include the general requirements of the College of Arts and Sciences plus the following:
BIOCH 100 | Biochemistry Orientation | 1 |
CHM 220/250 | Chemical Principles I and II | 10 |
or | ||
CHM 210/230/ | Chemistry I, II, and | |
371 | Chemical Analysis | 12 |
CHM 531 | Organic Chemistry I | 3 |
CHM 550 | Organic Chemistry II | 3 |
CHM 532 | Organic Chemistry Laboratory | 2 |
BIOCH 290 | Biochemistry Seminar | 2 |
BIOCH 522 | General Biochemistry Laboratory | 2 |
BIOCH 755 | Biochemistry I | 3 |
BIOCH 765 | Biochemistry II | 3 |
MATH 220 | Analytic Geometry and Calculus I | 4 |
MATH 221 | Analytic Geometry and Calculus II | 4 |
PHYS 113 | General Physics I | 4 |
PHYS 114 | General Physics II | 4 |
BIOL 198 | Principles of Biology | 4 |
Biological science electives | 8 |
These courses satisfy the mathematics and natural science requirements shown in the general requirements for the BA degree.
The requirements for the BS degree with a major in biochemistry include the general requirements of the College of Arts and Sciences plus the following:
BIOCH 100 | Biochemistry Orientation | 1 |
CHM 220/250 | Chemical Principles I and II | 10 |
or | ||
CHM 210/230/ | Chemistry I, II, and | |
371 | Chemical Analysis | 12 |
CHM 531 | Organic Chemistry I | 3 |
CHM 550 | Organic Chemistry II | 3 |
CHM 532 | Organic Chemistry Laboratory | 2 |
BIOCH 290 | Biochemistry Seminar | 2 |
BIOCH 755 | Biochemistry I | 3 |
BIOCH 756 | Biochemistry I Laboratory | 2 |
BIOCH 765 | Biochemistry II | 3 |
Upper-division biochemistry or chemistry electives* | 3 | |
MATH 220 | Analytic Geometry and Calculus I | 4 |
MATH 221 | Analytic Geometry and Calculus II | 4 |
PHYS 113 | General Physics I | 4 |
PHYS 114 | General Physics II | 4 |
CHM 500 | General Physical Chemistry | 3 |
BIOCH 590 | Physical Studies of Biomacromolecules | 3 |
BIOL 198 | Principles of Biology | 4 |
Biological science electives | 8 | |
Biology, statistics, or computer science, analytical geometry and calculus III, or differential equations elective | 3-4 |
The courses in this list satisfy the natural science and quantitative reasoning requirements shown in the general requirements for the BS degree.
*Must include at least one credit hour of BIOCH 799 Problems in Biochemistry. Up to two credit hours of Advanced Biochemistry Laboratories (BIOCH 757, 758, 766, 767) can be applied towards this requirement. |
Community college students who plan to transfer into either of the biochemistry curricula at the junior level should take the following science courses during their first two years of college:
A year of freshman chemistry—lecture and laboratory A semester of analytical chemistry—lecture and laboratory A year of organic chemistry—lecture and laboratory A year of analytic geometry and calculus A year of biology—lecture and laboratory
Completion of these science courses should allow students to go directly into biochemistry and advanced biology courses upon entry into a biochemistry curriculum.
A combined BS/MS program provides exceptional undergraduates an opportunity to obtain both a bachelor of science and a master of science in biochemistry in five years.
For details of application procedures and the program of study toward the MS degree, see the online graduate catalog at www.k-state.edu/grad. Admission and retention in the program requires a 3.0 GPA. Students may apply after they have accumulated 45-90 hours towards the BS degree. Students in the BS/MS program are excused from BIOCH 590 because the MS program requires that they take the comparable graduate course BIOCH 790.
BIOCH 100. Biochemistry Orientation. (1) I. Discussion of biochemistry as a discipline in the life sciences.
BIOCH 110. Biochemistry and Society. Biochemically oriented topics related to aspects of daily living. Development of knowledge and skills for understanding bioscience information in news media and the Internet. Selected biochemical concepts with applications to humans, such as: chemical principles and biomolecules, nutrituion/diets, growth and aging, disease, fermentation, drug action, medical diagnostics and forensics, and bioethics. Intended for nonscience majors.
BIOCH 265. Introductory Organic and Biochemistry. (5) I, II. For students in human ecology, nursing, and other areas desiring an integrated organic and biochemistry course to provide an understanding of carbohydrates, proteins, lipids, and digestive and metabolic systems. Three hours lec. and six hours lab a week. Pr.: CHM 110.
BIOCH 290. Biochemistry Seminar. (2) II. Lectures and discussions on basic topics in biochemistry. Pr.: BIOCH 100.
BIOCH 399. Honors Seminar in Biochemistry. (3) II. Lecture, guided reading, and discussion of topics of general interest in biochemistry. Topics will vary depending on the interests and backgrounds of students enrolled. Pr.: Freshman Honors Seminar.
BIOCH 499. Senior Honors Thesis. (2) I, II, S. Open only to seniors in the arts and sciences honors program. May be used by honors students to satisfy BS requirement for BIOCH 799. Pr.: BIOCH 755 or conc. enrollment.
BIOCH 521. General Biochemistry. (3) I, II, S. A basic study of the chemistry and metabolism of carbohydrates, lipids, proteins, and nucleic acids. Pr.: CHM 350.
BIOCH 522. General Biochemistry Laboratory. (2) I, II, S. A one-semester laboratory course with experiments relating to carbohydrates, lipids, proteins, nucleic acids, and enzymes. Six hours lab a week. Pr.: CHM 351 and BIOCH 521 or conc. enrollment, or BIOCH 755 or conc. enrollment.
BIOCH 590. Physical Studies of Biomacromolecules. (3) II. An overview of concepts and techniques of physical science used in studying the structure and function of biomacromolecules such as proteins and DNA. Applications include classical equilibrium thermodynamics and spectroscopic methods including mass spectrometry, circular dichroism (CD), and nuclear magnetic resonance (NMR). Pr.: CHM 500, MATH 221, and PHYS 114.
BIOCH 599. Research Training in Biochemistry. (1-3) I, II, S. Provides laboratory experience for majors and nonmajors in research techniques contributing to ongoing biochemical research. May be repeated up to 8 hours. Pr.: *Background adequate for relevant techniques.
BIOCH 755. Biochemistry I. (3) I. An introduction to physical methods, kinetics, and thermodynamics of biochemical reactions and bioenergetics, chemistry of proteins and amino acids, carbohydrate chemistry, and metabolism. BIOCH 755 and 765 are for students interested in a two-semester comprehensive coverage of biochemistry. For a one-semester course, enroll in BIOCH 521. Pr.: *Chemical analysis, one year of organic chemistry, differential and integral calculus.
BIOCH 756. Biochemistry I Laboratory. (2) I. An intensive laboratory course to accompany BIOCH 755. BIOCH 756 and 766 are sequential courses for students interested in a two-semester comprehensive coverage of experiments in biochemistry. For a one-semester laboratory course, enroll in BIOCH 522. Six hours lab a week. Pr.: *BIOCH 755 or conc. enrollment.
BIOCH 757. NMR Laboratory. (. 1) II. Basic methods and strategies of nuclear magnetic resonance used in the study of biological molecules. Principles and applications of simple one-dimensional and two-dimensional NMR experiments. Two three-hour laboratories per week. Meets second half of semester. Pr.: BIOCH 755.
BIOCH 758. Protein Structure Laboratory. (1) II. Principles and uses of computational and experimental approaches for studying peptide and protein structure and dynamics: computer modeling and simulation techniques, fluorescence and circular dichroism spectroscopies, microcalorimetry, and analytical ultracentrifugation. Two three-hour laboratories per week. Meets first half of semester. Pr.: BIOCH 755.
BIOCH 765. Biochemistry II. (3) II. Continuation of BIOCH 755; lipid chemistry and metabolism, amino acid metabolism, nutrition, nucleic acid chemistry and metabolism, integration of biochemical pathways and metabolic control mechanisms. Pr.: *BIOCH 755.
BIOCH 766. Recombinant DNA Laboratory I. (1) II. Biochemical manipulation of nucleic acids. Isolation and restriction enzyme characterization of plasmid DNA, ligation of DNA fragments to vector DNA, polymerase chain reaction, Southern blot analysis, DNA sequencing and analysis. Two three-hour labs per week. Meets first half of semester. Pr.: BIOCH 522.
BIOCH 767. Recombinant DNA Laboratory II. (1) II. Approaches to study RNA and proteins using recombinant DNA techniques. RNA extraction and affinity isolation of mRNA, Northern blot analysis, cDNA library construction and screening, bacterial or eukaryotic expression systems, purification and characterization of recombinant proteins, site-directed mutagenesis. Two three-hour labs per week. Meets second half of semester. Pr.: BIOCH 522.
BIOCH 790. Physical Biochemistry. (3) I. A survey of biophysical methods most frequently encountered in biochemistry and related disciplines. Emphasizes principles underlying methods used in determining the molecular weight and shape of biopolymers and techniques used in detecting conformational changes in nucleic acids, proteins, and polysaccharides. Pr.: MATH 221 and BIOCH 765.
BIOCH 799. Problems in Biochemistry. (Var.) I, II, S. Problem may include laboratory or library work in various phases of biochemistry, agricultural chemistry, or nutrition. Pr.: *Background adequate for problem undertaken.
*Nonmajors lacking these prerequisites should obtain consent of instructor before enrollment.