ugrad2000Home
ugrad2000
Enter either a:
  • Person's name (faculty, staff, or student)
  • Department name
  • Word to find on a web page

    More Search Options
  •  

    K-State Undergraduate Catalog 2000-2002
     

    About the Catalog
    About the University
    Calendar
    Glossary and Abbreviations
    Admission
    Academic Advising
    Enrollment
    Tuition and Fees
    Degrees
    Grades
    All-University Regulations
    Student Financial Assistance
    Services for Students
    Auxiliary Services and Facilities
    International Programs
    Secondary Majors
    Agriculture
    Architecture, Planning, and Design
    Arts and Sciences
    Business Administration
    Education
    Engineering
    dObjectives and Design Basis
    dGeneral Requirements
    dUniversity General Education
    dDegree Programs
    dProgram Options
    dInterdisciplinary Studies
    dDual Degrees
    dSupport Services
    dResearch Centers
    dExtension and Outreach
    dGeneral Engineering
    dArchitectural Engineering/ Construction Science and Management
    dBiological and Agricultural Engineering
    dChemical Engineering
    dCivil Engineering
    dComputing and Information Sciences
    dElectrical and Computer Engineering
    dIndustrial and Manufacturing Systems Engineering
    dMechanical and Nuclear Engineering
    Human Ecology
    Technology and Aviation
    Veterinary Medicine
    Graduate School
    Intercollegiate Athletics
    K-State Research and Extension
    Outreach
    University Faculty
     

    Mechanical and Nuclear Engineering

    J. Garth Thompson,* Head

    Professors Eckhoff,* Fenton,* Hosni,* Jones,* Shultis,* Simons,* Swenson,* Thompson,* and Walker;* Associate Professors Beck,* Chapman,* Eckels,* Jaberi,* Kelkar,* Krishnaswami,* Lease,* Madanshetty,* Pacey,* and White;* Assistant Professors Bajorek,* Freeman,* Hightower, Wang,* and Xin.* Emeriti: Professors Appl,* Azer,* Ball, Donnert,* Faw,* Gorton,* Gowdy,* Huang,* Lindholm, Merklin,* Nesmith, Pauli, Rohles, Turnquist, and Wood.

    E-mail: info@mne.ksu.edu
    www.mne.ksu.edu

    Mechanical engineering is a broad profession that traditionally comprises three primary subfields: energy, mechanisms and machinery, and controls. The work done by mechanical engineers includes the design, construction, and use of systems for the conversion of energy available from natural sources (water, fossil fuels, nuclear fuels, solar radiation) to other forms of useful energy (for transportation, heat, light, power); design and production of machines to lighten the burden of servile human work and to do work otherwise beyond human capability; processing of materials into useful products; and creative planning, development, and operation of systems using energy, machines, and resources; and manufacturing.

    The curriculum includes engineering science courses in the sophomore and junior years and engineering application courses in the junior and senior years. Laboratory courses and humanities and social science electives are found throughout the curriculum. The laboratory and application courses provide opportunity for development of student creativity, use of design methodology, and other aspects of engineering design.

    The entire curriculum serves as preparation for the industrial design project where a team of three to five students is assigned to work on a realistic engineering problem supplied by an industrial sponsor. This brief internship gives new mechanical engineering graduates the experience and confidence to move quickly into productive and satisfying careers.

    Because of the broad and fundamental nature of the curriculum, mechanical engineering provides an excellent background for careers in such fields as law, medicine, social services, urban design, and business manage- ment in addition to traditional engineering professions.

    MNE program objectives
    Students will gain a strong foundation in: pure sciences (chemistry and physics), mathematics, and engineering science and analysis; modern computational methods and tools; methods, standards, and conventions followed in the practice of engineering; theory and practice of engineering experimental methods; skills and knowledge required to formulate and solve team-oriented, realistic design problems; skills of individual and team-oriented communication, both writing and speaking; and professional responsibilities and ethics, with a special emphasis on social, environmental, and economic interactions.

    Our graduates have an ability to: apply knowledge of mathematics (through multivariate calculus and differential equations, statistics, and linear algebra), science (including chemistry and calculus-based physics with depth in one), and engineering; design and conduct experiments, as well as to analyze and interpret data; design a system, component, or process to meet desired needs; function on multi-disciplinary teams; identify, formulate, and solve engineering problems; understand professional and ethical responsibility; communicate effectively; understand the impact of engineering solutions in a global and societal context; recognize the need for, and develop an ability to: engage in life-long learning; know contemporary issues; use the techniques, skills, and modern engineering tools necessary for engineering practice; and work at a professional level for both thermal and mechanical systems including the design and realization of such systems.

    Individual programs
    The electives in the curriculum provide the opportunity for students to develop skills of individual interest. Students with clear career objectives may be permitted to substitute appropriate courses for some of the required courses. For example, students interested in the aerospace industry can choose elective courses in propulsion, aerodynamics, aircraft stability and control, and composite materials. A special interest in automobiles may prompt students to choose elective courses in internal combustion engines, machine vibrations, composite materials, and thermodynamic analysis. The combinations are extensive.

    The nuclear engineering option prepares students for professional positions in industry, government, private practice, and postgraduate studies in the application of nuclear technology. Engineering fundamentals are emphasized throughout the curriculum with the nuclear engineering courses in the junior and senior years. Students may organize a program suited to their particular needs and interests. Students may elect a program leading to specialized engineering practice or to postgraduate study in engineering, science, medicine, business, or law.

    Curriculum in mechanical engineering (ME)
    Bachelor of science in mechanical engineering
    135 hours required for graduation
    Accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology

    Freshman

    Fall semester
    CHM 210Chemistry I 4
    ENGL 100Expository Writing I* 3
    MATH 220Analytic Geometry and Calculus I 4
    SPCH 105Public Speaking IA 2
    Humanities or social science elective 3
    ME 015Mechanical Engineering Seminar 0
    16
     
    Spring semester
    CHM 230Chemistry II 4
    Humanities or social science elective 3
    MATH 221Analytic Geometry and Calculus II 4
    ME 212Engineering Graphics 2
    ECON 110Principles of Macroeconomics 3
    ME 015Mechanical Engineering Seminar 0
    16
     
    Sophomore
    Fall semester
    MATH 222Analytic Geometry and Calculus III 4
    PHYS 213Engineering Physics I 5
    IMSE 250Introduction to Manufacturing Processes and Systems 2
    IMSE 251Manufacturing Processes Lab 1
    CIS 209C Programming for Engineers 3
    Engineering/science elective 2
    ME 015Mechanical Engineering Seminar 0
    17
     
    Spring semester
    MATH 240Elementary Differential Equations 4
    PHYS 214Engineering Physics II 5
    ME 300Introduction to ME Design 2
    CE 333Statics 3
    NE 495Elements of Nuclear Engineering 3
    ME 015Mechanical Engineering Seminar 0
    17
     
    Junior
    Fall semester
    CE 533Mechanics of Materials 3
    EECE 519Electric Circuits and Control 4
    ME 512Dynamics 3
    ME 513Thermodynamics I 3
    Humanities or social science elective 2
    Engineering/science elective 2
    ME 015Mechanical Engineering Seminar 0
    17
     
    Spring semester
    EECE 589Circuits and Machines Lab 2
    ME 570Mechanical System Dynamics 4
    ME 533Machine Design I 3
    ME 535Measurement and Instrumentation Laboratory 3
    ME 571Fluid Mechanics 3
    ENGL 415Written Communication for Engineers 3
    ME 015Mechanical Engineering Seminar 0
    18
     
    Senior
    Fall semester
    ME 523Thermodynamics II 3
    ME 573Heat Transfer 3
    ME 560Engineering Economics 2
    Technical electives 3
    ME 640Automatic Controls 3
    ME 574Interdisciplinary Industrial Design Projects I 3
    ME 015Mechanical Engineering Seminar 0
    17
    Spring semester
    ME 563Machine Design II 3
    ME 575Interdisciplinary Industrial Design Projects II 3
    Technical electives 6
    Humanities or social science elective 5
    ME 015Mechanical Engineering Seminar 0
    17
     
    *Expository Writing II is optional if prerequisites for Written Communication for Engineers (ENGL 415) are met from Expository Writing I.

    Humanities and social science electives are to be selected from the approved list and need not be taken in the order listed in the curriculum. (Two courses must be 300 level or above.)

    Engineering/scsience electives:
    Students will take two of the following three choices:

    CHE 350  2
      or
    ME 400  2
      or
    STAT 490 and 491  2

    Two courses must be chosen from an approved list of design-build-test technical electives. The other course must be at the 400 level or above with a math, engineering, or physical science prerequisite.

    Electives must be selected to ensure that a minimum of 16 design credits and 16 (including ECON 110) humanities and social science credits are included in the program of study. All electives are to be chosen with the advice and approval of the faculty advisor and department head.

    Nuclear engineering option (NE)
    Bachelor of science in mechanical engineering
    135 hours required for graduation

    Freshman

    Fall semester
    CHM 210Chemistry I 4 ENGL 100
    Expository Writing I* 3
    MATH 220Analytic Geometry and Calculus I 4 SPCH 105
    Public Speaking IA 2 Humanities or social science elective 3 ME 015
    Mechanical Engineering Seminar 0
    16
     
    Spring semester
    CHM 230Chemistry II 4 Humanities or social science elective
     3 MATH 221Analytic Geometry and Calculus II 4 ME 212
    Engineering Graphic 2 ECON 110Principles of Macroeconomics
     3 ME 015Mechanical Engineering Seminar 0
    16
     
    Sophomore
    Fall semester
    MATH 222Analytic Geometry and Calculus III 4 PHYS 213
    Engineering Physics I 5 IMSE 241Production Processes
     3 C Programming Language Requirement 2 CHE 350Engineering Materials
     2 ME 015Mechanical Engineering Seminar 0
    16
     
    Spring semester
    MATH 240Elementary Differential Equations 4 PHYS 214
    Engineering Physics II 5 ME 300Introduction to ME Design
     2 CE 333Statics 3 ME 400
    Computer Application in Mechanical Engineering 2
    Humanities and social science elective 2 ME 015Mechanical Engineering Seminar
     0
    18
     
    Junior
    Fall semester
    CE 533Mechanics of Materials 3 EECE 519
    Electric Circuits and Controls 4 ME 512Dynamics
     3 ME 513Thermodynamics 3 NE 495
    Elements of Nuclear Engineering 3 STAT 490Introduction to Statistics and Probability I
     1
    STAT 491Introduction to Statistics and Probability II 1
    ME 015Mechanical Engineering Seminar 0
    18
     
    Spring semester
    ME 570Mechanical System Dynamics 4 NE 512
    Principles of Radiation and Detection 3 ME 535Measurement and Instrumentation Laboratory
     3
    ME 571Fluid Mechanics 3 ME 533
    Machine Design I** 3 NE 550Radiation Protection Engineering
     2 ME 015Mechanical Engineering Seminar 0
    18
     
    Senior
    Fall semester
    ME 523Thermodynamics II 3 ME 573
    Heat Transfer 3 NE 630Nuclear Reactor Theory
     3 NE 693Radiation Shielding Design 2 ME 640
    Automatic Controls 3 ME 574Industrial Industrial Design Projects I
     3
    ME 015Mechanical Engineering Seminar 0
    17
     
    Spring semester
    Humanities or social science elective 5 ENGL 415Written Communication for Engineers
     3 ME 560Engineering Economics 2 ME 575
    Interdisciplinary Industrial Design Projects II 3
    NE 648Nuclear Reactor Lab 3 ME 015
    Mechanical Engineering Seminar 0
    16
     
    *Expository Writing II is optional if prerequisites for Written Communications for Engineers (ENGL 415) are met from Expository Writing I.

    **The student may opt for ME 563 Machine Design II.

    Humanities and social science electives are to be selected from the approved list and need not be taken in order listed in the curriculum. (Two courses must be 300 level or above.)

    Mechanical engineering courses
    ME 015. Mechanical Engineering Seminar. (0) I, II. A monthly assembly of all undergraduates enrolled in the mechanical engineering curriculum for the purpose of exchanging information regarding academic, technical, social, ethical, and professional matters between students, faculty, and practicing professionals. One hour of lec. a month.

    ME 212. Engineering Graphics. (2) I, II. Technical sketching, study of basic principles of projective geometry, multiview drawings, pictorials, reading and interpreting drawings, introduction to CAD, sectioning, dimensioning. Three hours lab and one hour rec. a week. Pr.: Plane geometry.

    ME 300. Introduction to ME Design. (2) I, II. Introduction to the design process, dimensioning and tolerancing, fasteners, welds, gears, belts, chains, bearings, springs; detail and assembly drawings; interdisciplinary nature of design; design methodology; interdisciplinary design projects. Six hours lab a week. Pr.: ME 212, PHYS 213 and IMSE 241.

    ME 390. Topics in Mechanical Engineering. (Var.) I, II, S. Topics selected in consultation with instructor. Intended for interdisciplinary studies or innovative studies in mechanical engineering. Pr.: Consent of instructor.

    ME 400. Computer Applications in Mechanical Engineering. (2) I, II. The development and application of computer techniques to the problems of design and analysis in mechanical engineering, including computer programming. Two hours rec. a week. Pr.: MATH 221 and NE 385.

    ME 499. Honors Research in Mechanical Engineering. (Var.) I, II. Individual research problem selected with approval of faculty advisor. Open to students in the College of Engineering honors program. A report is presented orally and in writing during the last semester.

    ME 512. Dynamics. (3) I, II, S. Vector treatment of kinematics, Newton's Laws, work and energy, impulse and momentum, with applications to problems of particle and rigid body motion. Three hours rec. a week. Pr.: CE 333 and MATH 222.

    ME 513. Thermodynamics I. (3) I, II, S. Properties of the pure substance. The first and second laws of thermodynamics. Three hours rec. a week. Pr.: PHYS 213; MATH 222.

    ME 523. Thermodynamics II. (3) I, II. Continuation of Thermodynamics I. Gas mixtures, psychrometry, generalized thermodynamic relations and reactive systems. Three hours rec. a week. Pr.: ME 513.

    ME 533. Machine Design I. (3) I, II. Displacement, velocity, and acceleration analysis of machine elements— cams, gears, and other mechanisms. A brief introduction to dynamics of machines. Three hours rec. a week. Pr.: ME 512.

    ME 535. Measurement and Instrumentation Laboratory. (3) I, II. Theory and application of mechanical engineering measurements, instrumentation, and computer- based data acquisition. One hour rec. and six hours lab a week. Pr.: ME 400, 513, and EECE 519, and STAT 491.

    ME 560. Engineering Economics. (2) I, II. Economic analysis of problems as applied in engineering. Two hours rec. a week. Pr.: ECON 110, junior standing in engineering.

    ME 563. Machine Design II. (3) I, II. Design and analysis of machine elements, such as shafting, springs, screws, belts, brakes, clutches, gears, and bearings, with emphasis on strength, rigidity, and wear qualities. Three hours rec. a week. Pr.: CE 533 and ME 533.

    ME 570. Mechanical System Dynamics. (4) I, II. Basic linear systems modeling and equation formulation techniques. Time response of low-order linear systems. Modeling of engineering systems including hydraulic, mechanical, electronic, and thermal systems. State equations and system response analysis. Three hours lec. and three hours lab per week. Pr.: MATH 240. Pr. or conc.: ME 535 and ME 571.

    ME 571. Fluid Mechanics. (3) I, II, S. Physical properties; fluid statics; dynamics of ideal and real fluids (for incompressible and compressible flow); impulse and momentum; laws of similitude; dimensional analysis; flow in pipes; flow in open channels; flow about immersed objects. Three hours rec. a week. Pr.: ME 512. Pr. or conc.: ME 513.

    ME 573. Heat Transfer. (3) I, II. Fundamentals of conduction, convection, and radiation; principles of heat exchanger design and dimensional analysis. Three hours rec. a week. Pr.: ME 571, MATH 240.

    ME 574. Interdisciplinary Industrial Design Projects I. (3) I, II. Introduction to design theory, project management, team dynamics, and socio-economic context of design, etc.; application of design principles, engineering analysis, and experimental methods to an industrial interdisciplinary design project involving design, analysis, fabrication, and testing. One hour rec. and six hours lab per week. Pr.: ME 300, ME 535, ME 571, or instructor approval.

    ME 575. Interdisciplinary Industrial Design Projects II. (2) I, II. Continuation of ME 574 with emphasis on in-depth project experience. Six hours lab a week. Pr.: ME 574 or instructor approval.

    ME 610. Finite Element and Finite Difference Applications in Mechanical Engineering. (3) I. The application of finite element and finite difference methods to the solution of engineering problems. Topics include introductions to the methods, linear elastic stress analysis, thermal analysis, flow analysis, and modeling limitations and errors. Commercial computer codes are used in the applications. Pr.: CE 533, ME 571, ME 523, ME 400. Co-req: ME 573.

    ME 620. Internal Combustion Engines. (3) I. Analysis of cycles, design, and performance characteristics. Three hours rec. a week. Pr.: ME 523.

    ME 622. Environmental Engineering I. (3) II. Psychrometry; heating-cooling system design; refrigeration basics. Three hours rec. a week. Pr. or conc.: ME 573.

    ME 628. Aerodynamics. (3) I. A general introduction to aerodynamics including the analysis of lift, drag, thrust, and aircraft performance for subsonic aircraft. Three hours rec. a week. Pr.: ME 571 and MATH 240.

    ME 631. Aircraft and Missile Propulsion. (3) II. Mechanics and thermodynamics of aircraft and missile propulsion systems; combustion; air-breathing jet engines; rockets; applied compressible flow; propellants; performance and design of propulsion systems. Three hours rec. a week. Pr.: ME 523, 571, and MATH 240.

    ME 633. Thermodynamics of Modern Power Cycles. (3) I. The first and second law analysis of modern steam cycles for both fossil-fuel and nuclear-fuel installations. Cycle efficiency and factors affecting performance, such as cycle design, load factor, and auxiliaries. Thermal pollution resulting from steam cycles. Three hours rec. a week. Pr.: ME 513.

    ME 635. Dynamics of Flight—Stability and Control. (3) II. Development of the general dynamic equations of motion for six-degree-of-freedom aircraft. Aerodynamic and propulsion force and moment models, linear and flat earth approximations, static and dyanamic stability, and control analysis. Longitudinal and lateral normal modes, stability augmentation and automatic control design and simulation. Pr. or conc.: ME 640.

    ME 640. Automatic Controls. (3) I, II. Functional description of dynamic systems, analysis and design of feedback systems. Basic controllers, sensitivity, stability, and error analysis. Transient and steady-state response, compensation techniques. Design of controllers using root locus and frequency response methods. Introduction to discrete-time systems. Two hours lec. and three hours lab a week. Pr.: ME 570.

    ME 650. Introduction to Computer-Aided Design. (3) I. Scope of computer-aided design, computer-aided design workstations, interactive programming, numerical methods and computer graphics in computer-aided design, applications to design problems, introduction to finite elements, and optimal design. Pr.: ME 400 and senior standing in engineering.

    ME 651. Introduction to Composites. (3) I. Design, fabrication, and testing of various composite materials. Analysis of mechanical properties of laminated composites. Two hours rec. and three hours lab a week. Pr.: CE 533 and senior standing in engineering.

    ME 656. Machine Vibrations I. (3) I. A general consideration of free and forced vibration in machines for various degrees of freedom; critical speed; vibration isolation. Three hours rec. a week. Pr.: ME 512 and MATH 240.

    ME 670. Computer Control of Mechanical Systems. (3) II. Computer control of mechanical systems, including thermal and fluid as well as electro-mechanical, discrete modeling, and analysis of dynamic physical systems. Sampling and data conversion and reconstruction. Stability and performance specifications. Real time implementation. Digital controller design and implementation. Laboratory exercises in control applications and design. Two hours rec. and three hours lab per week. Pr.: ME 640.

    ME 699. Problems in Mechanical Engineering. (Var.) I, II, S. Pr.: Approval of department head.

    ME 716. Intermediate Dynamics. (3) II. General vector principles of the dynamics of particles and rigid bodies; applications to orbital calculations, gyrodynamics, and rocket performance; introduction to the energy methods of advanced dynamics. Three hours rec. a week. Pr.: ME 512 and MATH 240.

    ME 720. Intermediate Fluid Mechanics. (3) I. A continuation of ME 571 in the study of general topics in fluid mechanics including viscous flow, compressible flow, turbulence, and boundary layer theory. Numerous applications utilizing computational fluid dynamics. Three hours rec. a week. Pr.: ME 571, MATH 240.

    ME 721. Thermal Systems Design. (3) I. Thermal systems design including economics, simulation, and optimization. Includes heating, ventilating, and air conditioning (HVAC) design and control. Pr.: ME 573.

    ME 722. Environmental Engineering II. (3) I, in even years. Characteristics of air conditioning compressors, condensers, evaporators; system characteristics; air conditioning system controls; refrigeration systems; acoustics. Three hours rec. a week. Pr.: ME 622.

    ME 730. Control Systems Analysis and Design. (3) II. Use of classical analysis techniques for control system compensation. State space-control theory fundamentals are presented in addition to an introductory treatment of several major systems areas. Pr.: EECE 530 or ME 640. Same as EECE 730.

    ME 732. Robotic System Analysis. (3) I, in even years. Modeling and static position and dynamic motion of a serial link manipulator. Forward and inverse kinematics, differential motion, path description and generation, dynamic and static forces, dynamic formulations, and feedback control of joint actuators. Project work includes robot computer software development and lab exercises. Pr.: ME 512. Pr. or conc.: ME 640.

    ME 735. Geometric Modeling. (3) II, in even years. Geometric aspects of computer graphics. Two- and three-dimensional homogeneous transformations; hidden line and surface removal; space curves and surfaces, including Bezier and B-spline methods; solid modeling; applications and current topics. Same as CIS 735. Pr.: ME 650 or CIS 636 or EECE 636.

    ME 736. Applied Elasticity. (3) I. Analysis of stress and strain at a point in an elastic medium; two-dimensional problems in rectangular and polar coordinates; torsion of bars; energy principles; numerical methods. Three hours rec. a week. Pr.: CE 533.

    ME 738. Experimental Stress Analysis. (3) II, in odd years. Experimental methods of investigating stress distributions. Photoelastic models, photoelastic coatings, brittle coatings, and resistance strain gauges applied to static and dynamic problems. Two hours rec. and three hours lab a week. Pr. or conc.: CE 533.

    ME 756. Machine Vibrations II. (3) I, on demand. Advanced consideration of systems having free and forced vibrations, with particular reference to several degrees of freedom, distributed mass, generalized coordinates, and non-linear forms. Three hours rec. a week. Pr.: ME 656.

    ME 757. Kinematics. (3) I, in odd years. Geometry of constrained motion applied to point paths, specific input-output relations, function generators, kinematic synthesis. Three hours rec. a week. Pr.: ME 533.

    ME 760. Engineering Analysis I. (3) I. Methods of analysis employed in the solution of problems selected from various branches of engineering. Emphasis is on discrete systems. Three hours rec. a week. Pr.: MATH 240 and senior standing.

    ME 773. Intermediate Heat Transfer. (3) II. Conduction, convection, and radiation, mass transfer, phase change, heat exchangers, introductory numerical methods. Three hours rec. a week. Pr.: ME 573.

    ME 775. Optimal Mechanical Design. (3) II, in odd years. The philosophy of optimal design; unconstrained minimization for single variable and multivariable cases; linear and quadratic programming; constrained nonlinear optimization; applications to design of structures, mechanisms, dynamic systems, components, control systems, etc. Pr.: ME 400, MATH 240, and senior standing in engineering.

    Nuclear engineering courses
    NE 385. Engineering Computational Techniques. (2) I, II. Application of digital computer methods to the solution of engineering problems. Two hours lec. a week. Pr.: MATH 220.

    NE 415. Introduction to Engineering Analysis. (3) I. Introduction to analytical, statistical, and numerical analysis, including computer programming, as applied to engineering. Three hours rec. a week. Pr.: MATH 211 or 221.

    NE 495. Elements of Nuclear Engineering. (3) I, II. Survey of nuclear engineering concepts and applications. Nuclear reactions, radioactivity, radiation interaction with matter, reactor physics, risk and dose assessment, applications in medicine, industry, agriculture, and research. Three hours lec. a week. Pr.: MATH 221, PHYS 213.

    NE 500. Applied Engineering Analysis. (3) II. Methods and applications of analytical, statistical, and numerical analysis in engineering, including computer programming. Three hours rec. a week. Pr.: NE 415.

    NE 512. Principles of Radiation Detection. (3) II. Operating principles and general properties of devices used in the detection and characterization of ionizing radiation. Two hours rec. and three hours lab a week. Pr.: NE 495.

    NE 550. Radiation Protection Engineering. (2) II. Basic principles and concepts of radiation protection. Analysis of radioactive-decay systematics, dose and risk concepts, description of natural and other sources of ionizing radiation, basic procedures of external and internal dose evaluation, waste storage and disposal. Two hours rec. a week. Pr.: MATH 240, ME 400, NE 495. Pr. or conc.: NE 512.

    NE 620. Problems in Nuclear Engineering. (Var.) I, II, S. Specific studies in current and advanced problems in various phases of nuclear engineering. Pr.: Consult head of department.

    NE 630. Nuclear Reactor Theory. (3) I. Theory of neutron diffusion and thermalization with application to steady-state nuclear reactors. Three hours rec. a week. Pr.: MATH 240, NE 495.

    NE 648. Nuclear Reactor Laboratory. (3) I, II. Licensing, nuclear safety, and reactor operations. Measurement of neutronic, thermal-hydraulic, and health physics parameters. Two hours lec. and three hours lab per week. Pr.: NE 495, ME 513. Pr. or conc.: ME 573.

    NE 693. Radiation Shielding Design. (3) I. Sources of radiation, kernel concepts, and application of diffusion and ray theory to shielding calculations and design, with applications principally in stationary nuclear reactor shielding. Three hours rec. a week. Pr.: NE 550. Pr. or conc.: NE 630.

    NE 694. Nuclear Reactor Thermal Design. (3) II. Application of thermal-hydraulic principles to the design and analysis of nuclear power plants, with special emphasis on safety systems. Three hours rec. a week. Pr.: NE 630 and ME 573.

    NE 761. Radiation Measurement Systems. (3) I. Principles of systems used to measure radiation. Applications to radiation monitoring, dosimetry, and spectroscopy. Three hours rec. a week. Pr.: NE 512.

    NE 799. Special Topics in Nuclear Engineering. (Var.) On sufficient demand. Topical material of importance in nuclear engineering, such as controlled thermonuclear reactions, numerical analysis, Monte Carlo methods in radiation transport, effects of nuclear explosions, etc. Pr.: Consent of head of department.

    Topics within Engineering:
    dObjectives and Design Basis dSupport Services dCivil Engineering
    dGeneral Requirements dResearch Centers dComputing and Information Sciences
    dUniversity General Education dExtension and Outreach dElectrical and Computer Engineering
    dDegree Programs dGeneral Engineering dIndustrial and Manufacturing Systems Engineering
    dProgram Options dArchitectural Engineering/ Construction Science and Management dMechanical and Nuclear Engineering
    dInterdisciplinary Studies dBiological and Agricultural Engineering   
    dDual Degrees dChemical Engineering   
    start of standard bottom bar

    Kansas State University
    November 10, 2000